Maximum entropy distributions on graphs
نویسندگان
چکیده
Inspired by the problem of sensory coding in neuroscience, we study the maximum entropy distribution on weighted graphs with a given expected degree sequence. This distribution on graphs is characterized by independent edge weights parameterized by vertex potentials at each node. Using the general theory of exponential family distributions, we prove the existence and uniqueness of the maximum likelihood estimator (MLE) of the vertex parameters. We also prove the consistency of the MLE from a single graph sample, extending the results of Chatterjee, Diaconis, and Sly for unweighted (binary) graphs. Interestingly, our extensions require an intricate study of the inverses of diagonally dominant positive matrices. Along the way, we derive analogues of the Erdős-Gallai criterion of graphical sequences for weighted graphs.
منابع مشابه
A Note on the Bivariate Maximum Entropy Modeling
Let X=(X1 ,X2 ) be a continuous random vector. Under the assumption that the marginal distributions of X1 and X2 are given, we develop models for vector X when there is partial information about the dependence structure between X1 and X2. The models which are obtained based on well-known Principle of Maximum Entropy are called the maximum entropy (ME) mo...
متن کاملMaximum Entropy Distributions on Graphs by Andre Yohannes Wibisono
Maximum Entropy Distributions on Graphs by Andre Yohannes Wibisono Master of Arts in Statistics University of California, Berkeley Professor Michael I. Jordan, Chair We study the maximum entropy distribution on weighted graphs with a given expected degree sequence. This distribution on graphs is characterized by independent edge weights parameterized by vertex potentials at each node. Using the...
متن کاملDetermination of Maximum Bayesian Entropy Probability Distribution
In this paper, we consider the determination methods of maximum entropy multivariate distributions with given prior under the constraints, that the marginal distributions or the marginals and covariance matrix are prescribed. Next, some numerical solutions are considered for the cases of unavailable closed form of solutions. Finally, these methods are illustrated via some numerical examples.
متن کاملTsallis Maximum Entropy Lorenz Curves
In this paper, at first we derive a family of maximum Tsallis entropy distributions under optional side conditions on the mean income and the Gini index. Furthermore, corresponding with these distributions a family of Lorenz curves compatible with the optional side conditions is generated. Meanwhile, we show that our results reduce to Shannon entropy as $beta$ tends to one. Finally, by using ac...
متن کاملSparse Maximum-Entropy Random Graphs with a Given Power-Law Degree Distribution
Even though power-law or close-to-power-law degree distributions are ubiquitously observed in a great variety of large real networks, the mathematically satisfactory treatment of random power-law graphs satisfying basic statistical requirements of realism is still lacking. These requirements are: sparsity, exchangeability, projectivity, and unbiasedness. The last requirement states that entropy...
متن کامل